

Introduction to Land Surface Modeling Hydrology

Mark Decker (m.decker@unsw.edu.au)

Outline

- 1) Overview & definitions
- 2) LSM Overview 1D model with independent columns
- 3) Soil Moisture

Soil properties Vertical Redistribution Infiltration and Drainage

- 4) Horizontal Surface/Subsurface fluxes **Parameterizations**
- 5) Groundwater (aquifer)

1D conceptual **Explicit representation**

6) River Routing

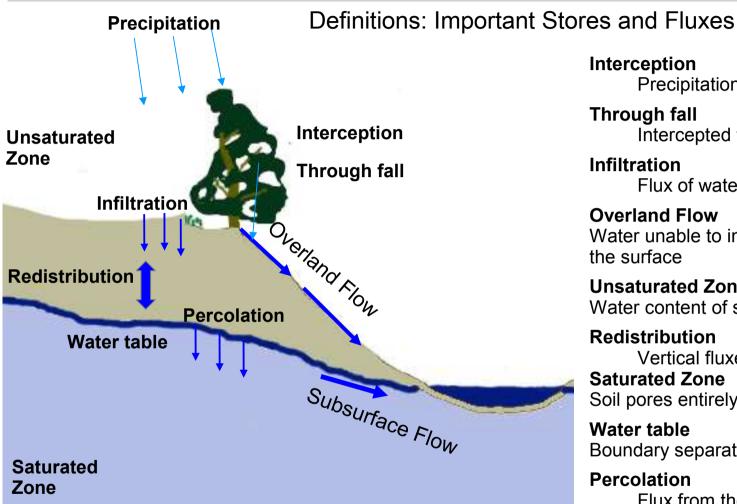
Governing Equations Land surface model simplifications

7) Snow

Horizontal extent Compaction, melting, freezing

For Each topic

Describe physical processes Summarize LSM implementations



Interception

Precipitation that adheres to vegetation

Through fall

Intercepted water that falls to the surface

Infiltration

Flux of water into the soil at the surface

Overland Flow

Water unable to infiltration that flows horizontally along the surface

Unsaturated Zone

Water content of soil is less than maximum capacity

Redistribution

Vertical fluxes of water (both directions)

Saturated Zone

Soil pores entirely filled with water

Water table

Boundary separating saturated and unsaturated zones

Percolation

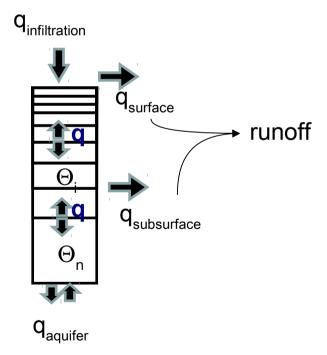
Flux from the unsaturated to the saturated zones

Subsurface flow

Horizontal flux primarily in the saturated zone

Climate/Weather models are generally 1D

Simulate area mean hydrology
Divide soil column into n layers
Explicitly simulate vertical movement of water
Changes in water for each layer
Fluxes between layers (q)
Sometimes include a groundwater


 $\mathbf{q}_{\mathrm{aquifer}}$

Parameterize horizontal fluxes

q_{surface}, **q**_{subsurface}

What governs soil moisture fluxes?

Australian Government

Australian Research Council

1) Definitions 2) LSMs 3) Soil Moisture 4) Horizontal Fluxes 5) Groundwater 6) Routing 7) Snow

Fluxes of Water in soil

Porosity: The ratio of the vacant volume to the total volume

Function of soil type

Silt: 0.3-0.5

Clay: 0.4-0.7

Sand: 0.2-0.5

 $p_o = \frac{V_v}{V_t}$

High porosity

Low porosity

Hydraulic Conductivity: Describes ability of water to travel through pores

Changes with soil type

Empirically related to liquid water content. Decreases with water content.

Greatly reduced when soil liquid freezes

Macro-pores (large voids from decaying roots, soil movement, etc.) can be significant

Soil Potential: Potential energy relative to a reference, drives moisture fluxes **Unsaturated Soils:**

Matric: Result of adhesive forces forming a meniscus of water around soil particles. Negative.

Gravimetric: Due to gravity, equal to depth. Positive.

Osmotic: Heterogeneous solute concentrations. Negative, usually neglected in LSMs.

Saturated Soils:

Pressure: Heterogeneous distribution of water.

Gravimetric: Due to gravity. Positive.

Osmotic: Heterogeneous solute concentrations. Negative, usually neglected

Australian Research Council

LSM soil layers

q_{in<u>fi</u>ltration}

1) Definitions 2) LSMs 3) Soil Moisture 4) Horizontal Fluxes 5) Groundwater 6) Routing 7) Snow

Soil Moisture Fluxes

Darcy's Law: Flux proportional to gradient in soil potential

3D:
$$q = -k \nabla (\psi_h)$$
 $\psi_h = \sum \psi_i$

$$\psi_h = \sum \psi_i$$

Climate Models (almost) universally 1D (vertical)

$$q = -k \frac{\partial \psi_h}{\partial z}$$

$$\psi_h = \psi_m + z$$

$$q = -k \frac{\partial \left(\psi_m + z\right)}{\partial z}$$

 $q=-krac{\partial \psi_h}{\partial z}$ $\psi_h=\psi_m+z$ $q=-krac{\partial \left(\psi_m+z
ight)}{\partial z}$ Flux in soil proportional to the conductivity times gradient in potential

Richards Equation: Conservation of mass applied to Darcy's Law.

Determines soil water content.

Θ is the volumetric water content of the soil (mm³ mm⁻³)

1D Equation in climate models

$$\frac{\partial \Theta}{\partial t} = \frac{\partial q}{\partial z}$$

$$\frac{\partial \Theta}{\partial t} = \frac{\partial q}{\partial z} \qquad \qquad \frac{\partial \Theta}{\partial t} = \frac{\partial}{\partial z} \left[-k \frac{\partial \left(\psi_m + z \right)}{\partial z} \right] \qquad \qquad \psi_m : \text{Soil matric potential (mm)} \\ \Theta : \text{Volumetric water content (mm³ mm-³)}$$

Changes soil moisture content result from gradients in moisture fluxes

Highly non-linear due to dependence of k and $\psi_{_{\! m}}$ on Θ Analytic solutions to Richards Equation are limited Numerous numerical solutions to Richards Equation.

Australian Government **Australian Research Council**

1) Definitions 2) LSMs 3) Soil Moisture 4) Horizontal Fluxes 5) Groundwater 6) Routing 7) Snow

Interception and Infiltration Interception

Precipitation collides with vegetation and canopy can store water Depends on vegetation amount, type, rate and type of precipitation

$$q_{\text{int}} = q_{precip} F_{\text{int}} [LAI].$$

F_{int} commonly an exponential function

LAI: leaf are index (area of leaves per srf area)

$$\frac{dW_{can}}{dt} = q_{int} - q_{thru} - E$$
. Water balance governs canopy water
$$W_{can}$$
: Canopy water content
$$E: \text{Evaporation/sublimation}$$

E: Evaporation/sublimation

Infiltration

Limit flux into soil based on state of soil Depends on surface layer moisture, ice, soil properties For through fall over unsaturated soils:

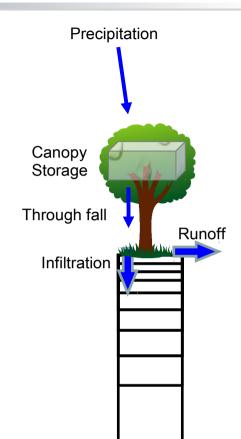
$$q_{\text{infl,max}} = K_{\text{sat,srf}} F_{\text{infl}} \left[\theta, \theta_{\text{sat}}, \frac{\partial \psi}{\partial \theta} \right].$$

 \mathbf{F}_{infl} can be one of many functions $\mathbf{q}_{\text{infl,max}}$ is the maximum infiltration

Infiltration limited by

- 1) K_{sat}
- 2) θ relative to θ_{sat}
- 3) ψ (soil potential) changes

Through fall that cannot infiltrate the soil becomes surface runoff



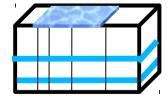
Surface and Subsurface Runoff

Surface Runoff (Overland Flow): q_{srf}

Two processes:

- 1) Dunne mechanism: runoff due to water falling on saturated areas
- 2) Horton mechanism: runoff from a water flux being larger than the infiltration capacity Grid cells typically much larger than hill slopes (subgrid scale process) Dependencies:

Saturated area, Θ , topography, vegetation, soil properties, soil ice


Saturated Fraction Imagine a grid cell with Θ < Θ_{\max}

Saturated fraction is parameterized using Θ Low elevations

- Saturated
 - precipitation immediately runs off (Dunne)

Higher Elevations

- Unsaturated
 - Precipitation infiltrates and/or runs off

Common Parameterizarion

$$\boldsymbol{q_{\mathrm{srf}}} \!=\! \! \boldsymbol{F_{sat}} \, \boldsymbol{q_{\mathrm{thr}}} \! + \! \left(1 \! - \! \boldsymbol{F_{\mathrm{sat}}} \right) \! \left(\boldsymbol{q_{\mathrm{thr}}} \! - \! \boldsymbol{q_{\mathrm{infl}}^{\mathrm{max}}} \right) \!$$

Saturated: Unsaturated:

Dunne Horton

 F_{sat} : Saturated fraction of grid cell

q_{thr}: Through fall reaching soil

 q^{max}_{infl} : Maximum infiltration rate

Surface and Subsurface Runoff

Surface Runoff (Overland Flow): q_{srf}

Grid cells typically much larger than hill slopes (subgrid scale process)

Parameterize the dependence on

Surface layer soil moisture, topography, vegetation, soil properties

$$\boldsymbol{q_{\mathrm{srf}}}\!=\!\!\boldsymbol{F_{\mathrm{sat}}}\,\boldsymbol{q_{\mathrm{thr}}}\!+\!\!\left(1\!-\!\boldsymbol{F_{\mathrm{sat}}}\right)\!\left(\boldsymbol{q_{\mathrm{thr}}}\!-\!\boldsymbol{q_{\mathrm{inff}}^{\mathrm{max}}}\right)$$

Fast: Saturated fraction of grid cell

q_{thr}: Through fall reaching soil q^{max} inf: Maximum infiltration rate

Saturated->Dunne->Runoff

Unsaturated->Horton->Runoff+Infiltration

Subsurface Fluxes (runoff): q_{sub}

Subgrid scale (topography governing fluxes not typically resolved) Parameterize the dependence on soil moisture, topography, soil properties

Common **Parameterizarion**

$$q_{\text{sub}} = G[z_{elv}] \Gamma[Z_{\nabla}]$$

Z_{olv}: Elevation in some manner

Z_√ : Water Table Depth

G and Γ : Functions that prescribe q_{sub} behavior

How can we define F_{sat} , G and Γ using physical mechanisms? **Common Approach: TOPMODEL**

Surface Runoff

Subsurface Runoff

$$q_{\mathrm{srf}} = F_{\mathit{sat}} \, q_{\mathrm{thr}} + \left(1 - F_{\mathrm{sat}}\right) \left(q_{\mathrm{thr}} - q_{\mathrm{inff}}^{\mathrm{max}}\right) \qquad q_{\mathrm{sub}} = G \left[z_{\mathit{elv}}\right] \Gamma \left[Z_{\nabla}\right]$$

$$q_{\mathrm{sub}} = G[z_{elv}] \Gamma[Z_{\nabla}]$$

TOPMODEL based runoff

Conceptually based on hydrologically similar areas Subgrid scale topographic statistics governs subgrid storage, Z_{∇} and $F_{\it sat}$

Assumes: 1) uniform runoff (per area) drains through a point 2) horizontal hydraulic gradient given by topography Subsurface runoff varies exponentially with water storage

Topographic Index: Larger area -> large λ

$$\lambda = \ln \left| \frac{a}{\tan(B)} \right|$$

 $\lambda = \ln \left[\frac{a}{\tan(B)} \right]$ a: Catchment Area (region that drains to a given point) B: Local slope of the surface

Saturated Fraction:

$$F_{\text{sat}} = \int_{\lambda > \lambda_m + fz} p df(\lambda) d\lambda$$

$$F_{\text{sat}} = \int_{\lambda > \lambda_m + fz} p df(\lambda) d\lambda$$

$$Z_{\nabla}: \text{ Grid cell mean } \lambda$$

$$Z_{\nabla}: \text{ Grid cell mean water table depth}$$

 $pdf(\lambda)$: Probability distribution of λ from the grid cell

f: Tunable parameter

 F_{sat} is equal to the area where the subgrid λ is greater than $\lambda_m + fZ_{\nabla}$ (mean λ and Z_{∇})

Subgrid topographic statistics give subgrid soil water and water table depth Provide a statistical alternative to explicitly simulating these fine scales Assumptions are not always valid

Surface Runoff

Subsurface Runoff

$$q_{\mathrm{srf}} = F_{\mathit{sat}} \, q_{\mathrm{thr}} + \left(1 - F_{\mathrm{sat}}\right) \left(q_{\mathrm{thr}} - q_{\mathrm{inff}}^{\mathrm{max}}\right) \qquad q_{\mathrm{sub}} = G \left[z_{\mathit{elv}}\right] \Gamma \left[Z_{\nabla}\right]$$

$$q_{\text{sub}} = G[z_{elv}] \Gamma[Z_{\nabla}]$$

TOPMODEL based runoff

Subsurface Runoff

$$q_{\text{sub}} = T_i \tan[B]$$

 $q_{\mathrm{sub}} = T_i \tan[B]$ Topographic gradients drive subsurface fluxes

Horizontal transmissivity (i.e. conductivity) declines exponentially with Z

Climate Models frequently adopt this functional form

$$q_{\text{sub}} = \frac{K_{\text{sat}}}{f} e^{-\lambda_m} e^{-fZ_{\nabla}}$$

 λ_m : Grid cell mean λ

 Z_{∇} : Grid cell mean water table depth

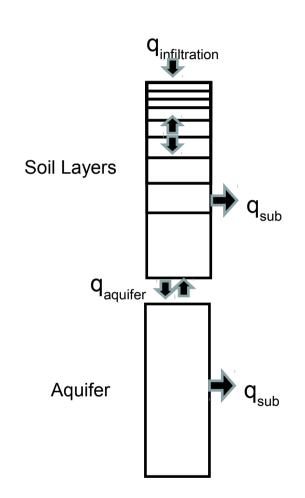
f: Tunable parameter

$$q_{\rm sub} = q_{max} e^{-fZ_{\nabla}}$$

Alternative that combines the topographic index and K_{sat} into q_{max}

TOPMODEL concepts are widely used in the parameterization of surface and subsurface runoff in climate and weather land surface models

Subsurface fluxes from above generally applied to both the saturated or unsaturated zone depending on the soil moisture state


1D Conceptual groundwater

Increasingly included in LSMs Dominant LSM formulation Simple bucket model

$$\frac{d\Theta_{gw}}{dt} = q_{aquifer} - q_{sub}$$

Vertical, horizontal fluxes and drainage parameterized

No transfer between grid cells
Neglects groundwater coupling with
Stream flow
Flood plains
Anthropogenic removal

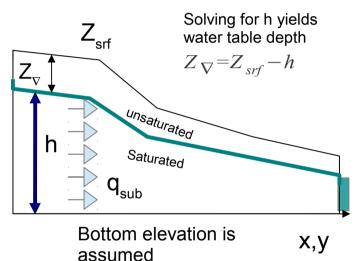
Explicit horizontal fluxes and Z_v dynamics: 2D groundwater model

Model resolution resolves the topography that governs fluxes

- Increasingly computationally viable
- Unknown aquifer and soil properties remain problematic

Common among hydrologists, used by at least 1 LSM Simplifying Assumptions (Dupuit-Forchheimer)

- Z_{∇} is relatively flat with a hydrostatic saturated zone
- Horizontal fluxes & K invariant with respect to z Solves for the thickness of the saturated layer:


Darcy's Law:
$$q_{\mathrm{sub}} = -kh \nabla_{\mathrm{xy}}[h]$$

h: thickness of saturated zone xy: horizontal direction

Conservation of
$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left[-kh \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[-kh \frac{\partial h}{\partial y} \right]$$

Simplified 2D simplified equation for groundwater dynamics (i.e. Z_{∇})

Explicit horizontal transport between grid cells Computationally expensive compared to 1D models

River Routing

Transport subsurface and surface runoff to ocean Dependent on Gravity, slope, friction, channel geometry, runoff

Saint-Venant Equation

1D Shallow water equation that approximates river flow

Mass Conservation

$$\frac{\partial y}{\partial t} + D_h \frac{\partial V}{\partial x} + V \frac{\partial y}{\partial x} = R_{sub} + R_{srf}$$

Momentum Conservation

$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + g \frac{\partial y}{\partial x} = g \left(S_o - S_f \right)$$

y: river height

S_o: river bed slope

V: velocity

S_f: friction term

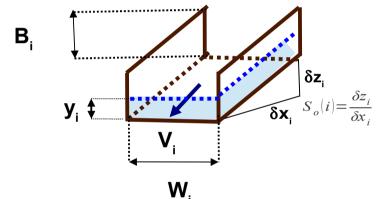
D: channel geom.

x:distance

R: runoff

g: gravity

Climate models generally used a simplified equation set although some now use the above



Rectangle Channel

Simplified River Routing in Global Models

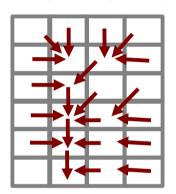
Flow direction specified for each cell using topography Right: Each cell has one downstream cell Can have multiple downstream cells

At grid cell i, the mass of river water is given by

$$\frac{dW_i}{dt} = \sum_i q_i^{\text{in}} - \sum_i q_i^{\text{out}} + R_i$$

W: river water mass R: source/sink

Source/SInk:


$$R_i = (q_{srf} + q_{subsrf}) \Delta t$$

Surface and subsurface runoff

Discharge proportional to river storage

$$q_i^{\text{in}} = \sum_{n=1}^N \mu W_{i-n}$$
 $q_i^{\text{out}} = \mu W_i$

Flow direction predetermined using topography

Above: Downstream cell is one of eight neighboring cells

Alternatively downstream cells can be defined beyond neighbors

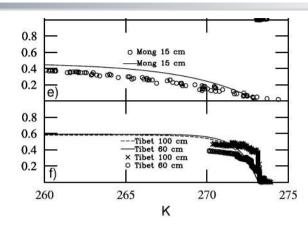
Soil Ice in LSMs

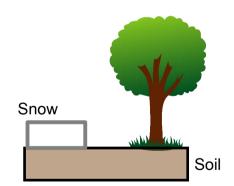
Frozen soil

Reduces hydraulic conductivity
Limits all fluxes
Liquid and Ice coexist below T < 0°C
Adhesion forces ensure some liquid

Snow Parameterizations

Single (mufti-layer) liquid/ice and energy balance


$$\begin{split} \frac{dM_{sno}}{dt} = & q_{input} - q_{\text{melt}} + q_{frz} - E_{\text{sublimation}} \\ \frac{dM_{liq}}{dt} = & q_{melt} - q_{\text{frz}} - q_{\text{drain}} \end{split}$$


Processes

Accumulation, melting, refreezing, sublimation Compaction

Snow density increases with time

Subgrid scale heterogeneity & vegetation burial Fraction coverage parameterized Vegetation buried if snow depth > vegetation height

Summary

LSM Hydrology Overview

1D model with independent columns Focus on vertical fluxes

Soil Moisture

Vertical redistribution from Richards equation and Darcy's law

Horizontal Surface/Subsurface fluxes

parameterized using topography

Groundwater

1D conceptual

River Routing

Only horizontal process Coupling neglected

Snow processes

